Custom Algorithm
Starting with titiler>=0.8
, we added the possibility to apply custom algorithms on Image outputs from tile
, crop
or preview
endpoints.
The algorithms are meant to overcome the limitation of expression
(using numexpr) by allowing more complex operations.
We added a set of custom algorithms:
hillshade
: Create hillshade from elevation datasetcontours
: Create contours lines (raster) from elevation datasetterrarium
: Mapzen's format to encode elevation value in RGB values (github.com/tilezen/joerd/blob/master/docs/formats.md#terrarium)terrainrgb
: Mapbox's format to encode elevation value in RGB values (docs.mapbox.com/data/tilesets/guides/access-elevation-data/)normalizedIndex
: Normalized Difference Index (e.g NDVI)cast
: Cast data to integerfloor
: Round data to the smallest integerceil
: Round data to the largest integer
Usage¶
# return a
httpx.get(
"http://127.0.0.1:8081/cog/tiles/16/34059/23335",
params={
"url": "https://data.geo.admin.ch/ch.swisstopo.swissalti3d/swissalti3d_2019_2573-1085/swissalti3d_2019_2573-1085_0.5_2056_5728.tif",
"buffer": 3, # By default hillshade will crop the output with a 3pixel buffer, so we need to apply a buffer on the tile
"algorithm": "hillshade",
},
)
# Pass algorithm parameter as a json string
httpx.get(
"http://127.0.0.1:8081/cog/preview",
params={
"url": "https://data.geo.admin.ch/ch.swisstopo.swissalti3d/swissalti3d_2019_2573-1085/swissalti3d_2019_2573-1085_0.5_2056_5728.tif",
"algorithm": "contour",
"algorithm_params": json.dumps({"minz": 1600, "maxz": 2100}) # algorithm params HAVE TO be provided as a JSON string
},
)
Create your own Algorithm¶
A titiler'w Algorithm
must be defined using titiler.core.algorithm.BaseAlgorithm
base class.
class BaseAlgorithm(BaseModel, metaclass=abc.ABCMeta):
"""Algorithm baseclass.
Note: attribute starting with `input_` or `output_` are considered as metadata
"""
# metadata
input_nbands: int
output_nbands: int
output_dtype: str
output_min: Optional[Sequence]
output_max: Optional[Sequence]
@abc.abstractmethod
def __call__(self, img: ImageData) -> ImageData:
"""Apply algorithm"""
...
class Config:
"""Config for model."""
extra = "allow"
This base class defines that algorithm:
-
HAVE TO implement an
__call__
method which takes an ImageData as input and return an ImageData. Using__call__
let us use the object as a callable (e.gAlgorithm(**kwargs)(image)
). -
can have input/output metadata (informative)
-
can have
parameters
(enabled byextra = "allow"
pydantic config)
Here is a simple example of a custom Algorithm:
from titiler.core.algorithm import BaseAlgorithm
from rio_tiler.models import ImageData
class Multiply(BaseAlgorithm):
# Parameters
factor: int # There is no default, which means calls to this algorithm without any parameter will fail
# We don't set any metadata for this Algorithm
def __call__(self, img: ImageData) -> ImageData:
# Multiply image data bcy factor
data = img.data * self.factor
# Create output ImageData
return ImageData(
data,
img.mask,
assets=img.assets,
crs=img.crs,
bounds=img.bounds,
)
Class Vs script¶
Using a Pydantic's BaseModel
class to construct the custom algorithm enables two things parametrization and type casting/validation.
If we look at the Multiply
algorithm, we can see it needs a factor
parameter. In Titiler (in the post_process dependency) we will pass this parameter via query string (e.g /preview.png?algo=multiply&algo_parameter={"factor":3}
) and pydantic will make sure we use the right types/values.
# Available algorithm
algo = {"multiply": Multiply}
def post_process_dependency(
algorithm: Literal[tuple(algo.keys())] = Query(None, description="Algorithm name"),
algorithm_params: str = Query(None, description="Algorithm parameter"),
) -> Optional[BaseAlgorithm]:
"""Data Post-Processing dependency."""
# Parse `algorithm_params` JSON parameters
kwargs = json.loads(algorithm_params) if algorithm_params else {}
if algorithm:
# Here we construct the Algorithm Object with the kwargs from the `algo_params` query-parameter
return algo[algorithm](**kwargs)
return None
Dependency¶
To be able to use your own algorithm in titiler's endpoint you need to create a Dependency
to tell the application what algorithm are available.
To ease the dependency creation, we added a dependency
property in the titiler.core.algorithm.Algorithms
class, which will return a FastAPI dependency to be added to the endpoints.
Note: The Algorithms
class is a store for the algorithm that can be extented using the .register()
method.
from typing import Callable
from titiler.core.algorithm import algorithms as default_algorithms
from titiler.core.algorithm import Algorithms
from titiler.core.factory import TilerFactory
# Add the `Multiply` algorithm to the default ones
algorithms: Algorithms = default_algorithms.register({"multiply": Multiply})
# Create a PostProcessParams dependency
PostProcessParams: Callable = algorithms.dependency
endpoints = TilerFactory(process_dependency=PostProcessParams)
Order of operation¶
When creating a map tile (or other images), we will fist apply the algorithm
then the rescaling
and finally the color_formula
.
with reader(url as src_dst:
image = src_dst.tile(
x,
y,
z,
)
dst_colormap = getattr(src_dst, "colormap", None)
# Apply algorithm
if post_process:
image = post_process(image)
# Apply data rescaling
if rescale:
image.rescale(rescale)
# Apply color-formula
if color_formula:
image.apply_color_formula(color_formula)
# Determine the format
if not format:
format = ImageType.jpeg if image.mask.all() else ImageType.png
# Image Rendering
return image.render(
img_format=format.driver,
colormap=colormap or dst_colormap,
**format.profile,
)