import json
import cf_xarray # noqa
import panel
import rasterio
import rioxarray # noqa
import xarray as xr
import zarr
# For zarr_format=2 encoding
from numcodecs import ZstdStore Affine GeoTransform and CRS in grid_mapping variable
Load example dataset from NetCDF into Xarray
fp_base = "20020601090000-JPL-L4_GHRSST-SSTfnd-MUR-GLOB-v02.0-fv04.1"
input = f"../data/{fp_base}.nc"
v2_output = f"../output/v2/{fp_base}_geotransform.zarr"
v3_output = f"../output/v3/{fp_base}_geotransform.zarr"ds = xr.open_dataset(input)Check that all variables have a CF-compliant standard name
standard_names = ds.cf.standard_names
vars_with_standard_names = [v[0] for v in ds.cf.standard_names.values()]
compliant_vars = []
non_complaint_vars = []
for var in ds.variables:
if var not in vars_with_standard_names:
non_complaint_vars.append(var)
else:
compliant_vars.append(var)
assert ds[var].attrs["standard_name"]
print(f"These variables do NOT have a CF-compliant standard name: {non_complaint_vars}")
print(f"These variables have a CF-compliant standard name: {compliant_vars}")These variables do NOT have a CF-compliant standard name: ['analysis_error', 'mask']
These variables have a CF-compliant standard name: ['time', 'lat', 'lon', 'analysed_sst', 'sea_ice_fraction']
Not all the variables in this dataset have a CF-compliant standard name. See https://github.com/zarr-developers/geozarr-spec/issues/60 for a recommendation that CF-compliant standard names should be a “SHOULD” rather than a “MUST” condition in the GeoZarr spec. For now, let’s subset to the variables that do use CF-compliant standard names.
ds = ds[compliant_vars]Assign CRS and geotransform using rioxarray and rasterio
First, let’s specify the CRS for the dataset
ds = ds.rio.write_crs("epsg:4326")# Specify which variable contains CRS information using grid_mapping
for var in ds.data_vars:
ds[var].attrs["grid_mapping"] = "spatial_ref"Next, let’s get the appropriate GeoTransform from the bounds, width, and height of one of the data variables.
length, height, width = ds.analysed_sst.shape
transform = rasterio.transform.from_bounds(*ds.analysed_sst.rio.bounds(), width, height)Now, let’s store the GeoTransform as a space separated string in the GeoTransform attribute of the spatial_ref auxiliary variable.
# Convert transform to GDAL's format
transform = transform.to_gdal()
# Convert transform to space separated string
transform = " ".join([str(i) for i in transform])
# Save as an attribute in the `spatial_ref` variable
ds["spatial_ref"].attrs["GeoTransform"] = transformFinally, we’ll remove the explicit coordinates that are redundant with the GeoTransform.
ds = ds.drop_vars(["lat", "lon"])
ds<xarray.Dataset> Size: 10GB
Dimensions: (time: 1, lat: 17999, lon: 36000)
Coordinates:
* time (time) datetime64[ns] 8B 2002-06-01T09:00:00
spatial_ref int64 8B 0
Dimensions without coordinates: lat, lon
Data variables:
analysed_sst (time, lat, lon) float64 5GB ...
sea_ice_fraction (time, lat, lon) float64 5GB ...
Attributes: (12/47)
Conventions: CF-1.5
title: Daily MUR SST, Final product
summary: A merged, multi-sensor L4 Foundation SST anal...
references: http://podaac.jpl.nasa.gov/Multi-scale_Ultra-...
institution: Jet Propulsion Laboratory
history: created at nominal 4-day latency; replaced nr...
... ...
project: NASA Making Earth Science Data Records for Us...
publisher_name: GHRSST Project Office
publisher_url: http://www.ghrsst.org
publisher_email: ghrsst-po@nceo.ac.uk
processing_level: L4
cdm_data_type: gridSpecify encoding and write to Zarr V2 format
spatial_chunk = 4096
compressor = Zstd(level=1)
encoding = {
"analysed_sst": {
"chunks": (1, spatial_chunk, spatial_chunk),
"compressor": compressor,
},
"sea_ice_fraction": {
"chunks": (1, spatial_chunk, spatial_chunk),
"compressor": compressor,
},
}
ds.to_zarr(v2_output, mode="w", consolidated=True, zarr_format=2, encoding=encoding)<xarray.backends.zarr.ZarrStore at 0x16aacde10>
Inspect Zarr V2 store
First, let’s look at the structure of Zarr arrays using zarr’s Group.tree() method
root = zarr.open_group(v2_output)
root.tree()/ ├── analysed_sst (1, 17999, 36000) float64 ├── sea_ice_fraction (1, 17999, 36000) float64 ├── spatial_ref () int64 └── time (1,) int32
Second, let’s look at what’s actually recorded in the Zarr metadata using the consolidated metadata at the root of the Zarr store.
In order to match valid JSON, we convert the nan fill_value entries to “nan”.
Key observations
- For each array, metadata is stored under
'.zattrs'. - All arrays contain a
.zattrs/standard_name. - The root group specifies that the metadata follows CF conventions, which should be validated.
.zattrs/_ARRAY_DIMENSIONSfortimecontains a list with only the the name of the array, indicating that it is a coordinates variable..zattrs/_ARRAY_DIMENSIONSforspatial_refcontains an empty list, indicating that it is an auxiliary coordinate..zattrs/_ARRAY_DIMENSIONSforanalysed_sst,sea_ice_fractioncontain a list referring to other arrays, indicating that they are data variables rather than coordinate variables..zattrs/grid_mappingforanalysed_sst,sea_ice_fractionis"spatial_ref"indicating that CRS information is included in that auxiliary variable’s metadata.spatial_ref/.zattrscontains the OGC WKT for the CRS with aGeoTransformattribute containing a string separated GDAL format Affine GeoTransform.zattrs/coordinatesforanalysed_sst,sea_ice_fractionincludelatandlonindicating that the GeoTransform produces those coordinates. The part of the stack that adds this metadata coordinates should be further investigated.
panel.extension()
consolidated_metadata_file = f"{v2_output}/.zmetadata"
with open(consolidated_metadata_file) as f:
metadata = json.load(f)["metadata"]
metadata["sea_ice_fraction/.zarray"]["fill_value"] = str(
metadata["sea_ice_fraction/.zarray"]["fill_value"]
)
metadata["analysed_sst/.zarray"]["fill_value"] = str(
metadata["sea_ice_fraction/.zarray"]["fill_value"]
)
panel.pane.JSON(metadata, name="JSON")Specify encoding and write to Zarr V3 format
While GeoZarr v0.4 is Zarr V2 specific, let’s write a Zarr V3 store to get an idea about how GeoZarr could be adapted for Zarr format 3.
spatial_chunk = 4096
compressor = zarr.codecs.ZstdCodec(level=1)
encoding = {
"analysed_sst": {
"chunks": (1, spatial_chunk, spatial_chunk),
"compressors": compressor,
},
"sea_ice_fraction": {
"chunks": (1, spatial_chunk, spatial_chunk),
"compressors": compressor,
},
}
ds.to_zarr(v3_output, mode="w", consolidated=True, zarr_format=3, encoding=encoding)/Users/max/Documents/Code/developmentseed/geozarr-examples/.pixi/envs/test/lib/python3.13/site-packages/zarr/api/asynchronous.py:203: UserWarning: Consolidated metadata is currently not part in the Zarr format 3 specification. It may not be supported by other zarr implementations and may change in the future.
warnings.warn(
<xarray.backends.zarr.ZarrStore at 0x16aacd510>
Key observations
- For each group and array, metadata is stored under the ‘attributes’ key in ‘zarr.json’
- All arrays contain a
attributes/standard_name - The dimensions associated with an array are stored under
zarr.json/dimension_names(separately from theattributes) rather than_ARRAY_DIMENSIONS - the
node_typespecifies whether the key holds a Zarr Array or a Zarr Group - The coordinates associated with an array are still specified within the array metadata. Currently this is an Xarray implementation detail rather than a part of the GeoZarr specification.
- The
fill_valueforsea_ice_fractionandanalysed_sstis 0 instead of nan. This is likely an error with the fill value not being explicitly specified.
panel.extension()
consolidated_metadata_file = f"{v3_output}/zarr.json"
with open(consolidated_metadata_file) as f:
metadata = json.load(f)["consolidated_metadata"]["metadata"]
panel.pane.JSON(metadata, name="JSON")