import json
import cf_xarray # noqa
import panel
import rioxarray # noqa
import xarray as xr
import zarr
# For zarr_format=2 encoding
from numcodecs import ZstdStore CRS information in a auxiliary variable specified in grid_mapping
Load example dataset from NetCDF into Xarray
fp_base = "20020601090000-JPL-L4_GHRSST-SSTfnd-MUR-GLOB-v02.0-fv04.1"
input = f"../data/{fp_base}.nc"
v2_output = f"../output/v2/{fp_base}.zarr"
v3_output = f"../output/v3/{fp_base}.zarr"ds = xr.open_dataset(input)Check that all variables have a CF-compliant standard name
standard_names = ds.cf.standard_names
vars_with_standard_names = [v[0] for v in ds.cf.standard_names.values()]
compliant_vars = []
non_complaint_vars = []
for var in ds.variables:
if var not in vars_with_standard_names:
non_complaint_vars.append(var)
else:
compliant_vars.append(var)
assert ds[var].attrs["standard_name"]
print(f"These variables do NOT have a CF-compliant standard name: {non_complaint_vars}")
print(f"These variables have a CF-compliant standard name: {compliant_vars}")These variables do NOT have a CF-compliant standard name: ['analysis_error', 'mask']
These variables have a CF-compliant standard name: ['time', 'lat', 'lon', 'analysed_sst', 'sea_ice_fraction']
Not all the variables in this dataset have a CF-compliant standard name. See https://github.com/zarr-developers/geozarr-spec/issues/60 for a recommendation that CF-compliant standard names should be a “SHOULD” rather than a “MUST” condition in the GeoZarr spec. For now, let’s subset to the variables that do use CF-compliant standard names.
ds = ds[compliant_vars]Assign CRS information to an auxiliary variable using rioxarray
ds = ds.rio.write_crs("epsg:4326")
# Specify which variable contains CRS information using grid_mapping
for var in ds.data_vars:
ds[var].attrs["grid_mapping"] = "spatial_ref"Specify encoding and write to Zarr V2 format
spatial_chunk = 4096
compressor = Zstd(level=1)
encoding = {
"analysed_sst": {
"chunks": (1, spatial_chunk, spatial_chunk),
"compressor": compressor,
},
"sea_ice_fraction": {
"chunks": (1, spatial_chunk, spatial_chunk),
"compressor": compressor,
},
}
ds.to_zarr(v2_output, mode="w", consolidated=True, zarr_format=2, encoding=encoding)<xarray.backends.zarr.ZarrStore at 0x16a11e560>
Inspect Zarr V2 store
First, let’s look at the structure of Zarr arrays using zarr’s Group.tree() method
root = zarr.open_group(v2_output)
root.tree()/ ├── analysed_sst (1, 17999, 36000) float64 ├── lat (17999,) float32 ├── lon (36000,) float32 ├── sea_ice_fraction (1, 17999, 36000) float64 ├── spatial_ref () int64 └── time (1,) int32
Second, let’s look at what’s actually recorded in the Zarr metadata using the consolidated metadata at the root of the Zarr store.
In order to match valid JSON, we convert the nan fill_value entries to “nan”.
Key observations
- For each array, metadata is stored under ‘.zattrs’
- All arrays contain a
.zattrs/standard_name - The root group specifies that the metadata follows CF conventions, which should be validated.
.zattrs/_ARRAY_DIMENSIONSforlat,lon, andtimecontains a list with only the the name of the array, indicating that they are coordinates variables..zattrs/_ARRAY_DIMENSIONSforspatial_refcontains an empty list, indicating that it is an auxiliary coordinate..zattrs/_ARRAY_DIMENSIONSforanalysed_sst,sea_ice_fractioncontain a list referring to other arrays, indicating that they are data variables rather than coordinate variables..zattrs/grid_mappingforanalysed_sst,sea_ice_fractionis"spatial_ref"indicating that CRS information is included in that auxiliary variable’s metadata.spatial_ref/.zattrscontains the OGC WKT for the CRS.
panel.extension()
consolidated_metadata_file = f"{v2_output}/.zmetadata"
with open(consolidated_metadata_file) as f:
metadata = json.load(f)["metadata"]
metadata["sea_ice_fraction/.zarray"]["fill_value"] = str(
metadata["sea_ice_fraction/.zarray"]["fill_value"]
)
metadata["analysed_sst/.zarray"]["fill_value"] = str(
metadata["sea_ice_fraction/.zarray"]["fill_value"]
)
panel.pane.JSON(metadata, name="JSON")Specify encoding and write to Zarr V3 format
While GeoZarr v0.4 is Zarr V2 specific, let’s write a Zarr V3 store to get an idea about how GeoZarr could be adapted for Zarr format 3.
spatial_chunk = 4096
compressor = zarr.codecs.ZstdCodec(level=1)
encoding = {
"analysed_sst": {
"chunks": (1, spatial_chunk, spatial_chunk),
"compressors": compressor,
},
"sea_ice_fraction": {
"chunks": (1, spatial_chunk, spatial_chunk),
"compressors": compressor,
},
}
ds.to_zarr(v3_output, mode="w", consolidated=True, zarr_format=3, encoding=encoding)/Users/max/Documents/Code/developmentseed/geozarr-examples/.pixi/envs/test/lib/python3.13/site-packages/zarr/api/asynchronous.py:203: UserWarning: Consolidated metadata is currently not part in the Zarr format 3 specification. It may not be supported by other zarr implementations and may change in the future.
warnings.warn(
<xarray.backends.zarr.ZarrStore at 0x16a11f910>
Key observations
- For each group and array, metadata is stored under the ‘attributes’ key in ‘zarr.json’.
- All arrays contain a
attributes/standard_name. - The dimensions associated with an array are stored under
zarr.json/dimension_names(separately from theattributes) rather than_ARRAY_DIMENSIONS. - the
node_typespecifies whether the key holds a Zarr Array or a Zarr Group. - The coordinates associated with an array are still specified within the array metadata. Currently this is an Xarray implementation detail rather than a part of the GeoZarr specification.
- The
fill_valueforsea_ice_fractionandanalysed_sstis 0 instead of nan. This is likely an error with the fill value not being explicitly specified.
panel.extension()
consolidated_metadata_file = f"{v3_output}/zarr.json"
with open(consolidated_metadata_file) as f:
metadata = json.load(f)["consolidated_metadata"]["metadata"]
panel.pane.JSON(metadata, name="JSON")