Working With STAC - At Scale¶
STAC: SpatioTemporal Asset Catalog¶
The SpatioTemporal Asset Catalog (STAC) specification aims to standardize the way geospatial assets are exposed online and queried. A 'spatiotemporal asset' is any file that represents information about the earth captured in a certain space and time. The initial focus is primarily remotely-sensed imagery (from satellites, but also planes, drones, balloons, etc), but the core is designed to be extensible to SAR, full motion video, point clouds, hyperspectral, LiDAR and derived data like NDVI, Digital Elevation Models, mosaics, etc.
Ref: https://github.com/radiantearth/stac-spechttps://github.com/radiantearth/stac-spec
Using STAC makes data indexation and discovery really easy. In addition to the Collection/Item/Asset (data) specifications, data providers are also encouraged to follow a STAC API specification: https://github.com/radiantearth/stac-api-spec
The API is compliant with the OGC API - Features standard (formerly known as OGC Web Feature Service 3), in that it defines many of the endpoints that STAC uses. A STAC API should be compatible and usable with any OGC API - Features clients. The STAC API can be thought of as a specialized Features API to search STAC Catalogs, where the features returned are STAC Items, that have common properties, links to their assets and geometries that represent the footprints of the geospatial assets.
Sentinel 2¶
Thanks to Digital Earth Africa and in collaboration with Sinergise, Element 84, Amazon Web Services (AWS) and the Committee on Earth Observation Satellites (CEOS), Sentinel 2 (Level 2) data over Africa, usually stored as JPEG2000, has been translated to COG more important a STAC database and API has been setup.
The API is provided by @element84 and follows the latest specification: https://earth-search.aws.element84.com/v0
TiTiler: STAC + COG¶
Docs: https://github.com/developmentseed/titiler/blob/main/docs/src/endpoints/stac.md
TiTiler was first designed to work with single COG by passing the file URL to the tiler.
e.g : https://myendpoint/cog/tiles/1/2/3?url=https://somewhere.com/mycog.tif
With STAC is a bit different because we first have to read the STAC items and then know which assets to read.
Example of STAC Item
{
"type": "Feature",
"id": "S2A_34SGA_20200318_0_L2A",
"geometry": {...},
"properties": {
"datetime": "2020-03-18T09:11:33Z",
...
},
"collection": "sentinel-s2-l2a-cogs",
"assets": {
"thumbnail": {
"title": "Thumbnail",
"type": "image/png",
"href": "https://myurl.com/preview.jpg"
},
...
"B03": {
"title": "Band 3 (green)",
"type": "image/tiff; application=geotiff; profile=cloud-optimized",
"href": "https://myurl.com/B03.tif",
"proj:shape": [
10980,
10980
],
"proj:transform": [
10,
0,
699960,
0,
-10,
3600000,
0,-*
0,
1
]
},
...
},
"links": [...]
}
To be able to create Web Map tile from the B03
asset you'll need to pass the STAC Item url and the asset name:
https://myendpoint/stac/tiles/1/2/3?url=https://somewhere.com/item.json&assets=B03
Requirements¶
To be able to run this notebook you'll need the following requirements:
- rasterio
- folium
- httpx
- tqdm
!pip install rasterio folium httpx tqdm
# Uncomment this line if you need to install the dependencies
# !pip rasterio folium httpx tqdm
import os
import json
import base64
import httpx
import datetime
import itertools
import urllib.parse
from io import BytesIO
from functools import partial
from concurrent import futures
from tqdm.notebook import tqdm
from rasterio.plot import reshape_as_image
from rasterio.features import bounds as featureBounds
from folium import Map, TileLayer, GeoJson
%pylab inline
# Endpoint variables
titiler_endpoint = (
"https://titiler.xyz" # Developmentseed Demo endpoint. Please be kind.
)
stac_endpoint = "https://earth-search.aws.element84.com/v0/search"
Search for STAC Items¶
See https://github.com/radiantearth/stac-api-spec for more documentation about the stac API
- AOI
You can use geojson.io to define your search AOI
geojson = {
"type": "FeatureCollection",
"features": [
{
"type": "Feature",
"properties": {},
"geometry": {
"type": "Polygon",
"coordinates": [
[
[30.810813903808594, 29.454247067148533],
[30.88600158691406, 29.454247067148533],
[30.88600158691406, 29.51879923863822],
[30.810813903808594, 29.51879923863822],
[30.810813903808594, 29.454247067148533],
]
],
},
}
],
}
bounds = featureBounds(geojson)
m = Map(
tiles="OpenStreetMap",
location=((bounds[1] + bounds[3]) / 2, (bounds[0] + bounds[2]) / 2),
zoom_start=11,
)
geo_json = GeoJson(data=geojson)
geo_json.add_to(m)
m
- Define dates and other filters
start = datetime.datetime.strptime("2019-01-01", "%Y-%m-%d").strftime(
"%Y-%m-%dT00:00:00Z"
)
end = datetime.datetime.strptime("2019-12-11", "%Y-%m-%d").strftime(
"%Y-%m-%dT23:59:59Z"
)
# POST body
query = {
"collections": ["sentinel-s2-l2a-cogs"],
"datetime": f"{start}/{end}",
"query": {
"eo:cloud_cover": {"lt": 5},
},
"intersects": geojson["features"][0]["geometry"],
"limit": 100,
"fields": {
"include": [
"id",
"properties.datetime",
"properties.eo:cloud_cover",
], # This will limit the size of returned body
"exclude": ["assets", "links"], # This will limit the size of returned body
},
}
# POST Headers
headers = {
"Content-Type": "application/json",
"Accept-Encoding": "gzip",
"Accept": "application/geo+json",
}
data = httpx.post(stac_endpoint, headers=headers, json=query).json()
print("Results context:")
print(data["context"])
print()
print("Example of item:")
print(json.dumps(data["features"][0], indent=4))
sceneid = [f["id"] for f in data["features"]]
cloudcover = [f["properties"]["eo:cloud_cover"] for f in data["features"]]
dates = [f["properties"]["datetime"][0:10] for f in data["features"]]
m = Map(
tiles="OpenStreetMap",
location=((bounds[1] + bounds[3]) / 2, (bounds[0] + bounds[2]) / 2),
zoom_start=8,
)
geo_json = GeoJson(
data=data,
style_function=lambda x: {
"opacity": 1,
"dashArray": "1",
"fillOpacity": 0,
"weight": 1,
},
)
geo_json.add_to(m)
m
Plot Date / Cloud Cover
fig = plt.figure(dpi=100)
fig.autofmt_xdate()
ax = fig.add_subplot(1, 1, 1)
ax.plot(
dates,
cloudcover,
label="Cloud Cover",
color="tab:red",
linewidth=0.4,
linestyle="-.",
)
ax.legend()
Use Titiler endpoint¶
https://titiler.xyz/api.html#/SpatioTemporal%20Asset%20Catalog
{endpoint}/stac/tiles/{tileMatrixSetId}/{z}/{x}/{y}.{format}?url={stac_item}&{otherquery params}
{endpoint}/stac/bbox/{minx},{miny},{maxx},{maxy}.{format}?url={stac_item}&{otherquery params}
{endpoint}/stac/point/{minx},{miny}?url={stac_item}&{otherquery params}
url_template = "https://earth-search.aws.element84.com/v0/collections/sentinel-s2-l2a-cogs/items/{id}"
Visualize One Item¶
# Get Tile URL
item = url_template.format(id=sceneid[-1])
print(item)
r = httpx.get(
f"{titiler_endpoint}/stac/WebMercatorQuad/tilejson.json",
params=(
("url", item),
# Simple RGB combination (True Color)
(
"assets",
"B04",
), # red, in next STAC item version (see https://github.com/cogeotiff/rio-tiler-pds/issues/63)
(
"assets",
"B03",
), # green, in next STAC item version (see https://github.com/cogeotiff/rio-tiler-pds/issues/63)
(
"assets",
"B02",
), # blue, in next STAC item version (see https://github.com/cogeotiff/rio-tiler-pds/issues/63)
(
"color_formula",
"Gamma RGB 3.5 Saturation 1.7 Sigmoidal RGB 15 0.35",
), # We use a rio-color formula to make the tiles look nice
("minzoom", 8), # By default titiler will use 0
("maxzoom", 14), # By default titiler will use 24
),
).json()
print(r)
m = Map(
location=((bounds[1] + bounds[3]) / 2, (bounds[0] + bounds[2]) / 2), zoom_start=10
)
tiles = TileLayer(
tiles=r["tiles"][0],
min_zoom=r["minzoom"],
max_zoom=r["maxzoom"],
opacity=1,
attr="Digital Earth Africa",
)
tiles.add_to(m)
m
r = httpx.get(
f"{titiler_endpoint}/stac/WebMercatorQuad/tilejson.json",
params=(
("url", url_template.format(id=sceneid[0])),
# False Color Infrared
(
"assets",
"B08",
), # nir, in next STAC item version (see https://github.com/cogeotiff/rio-tiler-pds/issues/63)
(
"assets",
"B04",
), # red, in next STAC item version (see https://github.com/cogeotiff/rio-tiler-pds/issues/63)
(
"assets",
"B03",
), # green, in next STAC item version (see https://github.com/cogeotiff/rio-tiler-pds/issues/63)
(
"color_formula",
"Gamma RGB 3.5 Saturation 1.7 Sigmoidal RGB 15 0.35",
), # We use a rio-color formula to make the tiles look nice
("minzoom", 8), # By default titiler will use 0
("maxzoom", 14), # By default titiler will use 24
),
).json()
print(r)
m = Map(
location=((bounds[1] + bounds[3]) / 2, (bounds[0] + bounds[2]) / 2), zoom_start=10
)
tiles = TileLayer(
tiles=r["tiles"][0],
min_zoom=r["minzoom"],
max_zoom=r["maxzoom"],
opacity=1,
attr="Digital Earth Africa",
)
tiles.add_to(m)
m
r = httpx.get(
f"{titiler_endpoint}/stac/WebMercatorQuad/tilejson.json",
params={
"url": url_template.format(id=sceneid[0]),
"expression": "(B08-B04)/(B08+B04)", # NDVI (nir-red)/(nir+red), in next STAC item version (see https://github.com/cogeotiff/rio-tiler-pds/issues/63)
# We need to tell rio-tiler that each asset is a Band
# (so it will select the first band within each asset automatically)
"asset_as_band": True,
"rescale": "-1,1",
"minzoom": 8, # By default titiler will use 0
"maxzoom": 14, # By default titiler will use 24
"colormap_name": "viridis",
},
).json()
print(r)
m = Map(
location=((bounds[1] + bounds[3]) / 2, (bounds[0] + bounds[2]) / 2), zoom_start=10
)
tiles = TileLayer(
tiles=r["tiles"][0],
min_zoom=r["minzoom"],
max_zoom=r["maxzoom"],
opacity=1,
attr="Digital Earth Africa",
)
tiles.add_to(m)
m
More¶
titiler doesn't return only png or jpeg but can also return Numpy array directly
def fetch_bbox_array(sceneid, bbox, assets=None, expression=None, **kwargs):
"""Helper function to fetch and decode Numpy array using Titiler endpoint."""
# STAC ITEM URL
stac_item = f"https://earth-search.aws.element84.com/v0/collections/sentinel-s2-l2a-cogs/items/{sceneid}"
xmin, ymin, xmax, ymax = bbox
# TiTiler required URL + asset or expression parameters
params = (("url", stac_item), ("max_size", 1024))
if assets:
for asset in assets:
params += (("assets", asset),)
elif expression:
params += (
("expression", expression),
("asset_as_band", True),
)
else:
raise Exception("Missing band or expression input")
params += tuple(kwargs.items())
# TITILER ENDPOINT
url = f"{titiler_endpoint}/stac/bbox/{xmin},{ymin},{xmax},{ymax}.npy"
r = httpx.get(url, params=params)
data = numpy.load(BytesIO(r.content))
return sceneid, data[0:-1], data[-1]
def _filter_futures(tasks):
for future in tasks:
try:
yield future.result()
except Exception:
pass
def _stats(data, mask):
arr = numpy.ma.array(data)
arr.mask = mask == 0
return arr.min().item(), arr.max().item(), arr.mean().item(), arr.std().item()
# Fetch one data
_, data, mask = fetch_bbox_array(
sceneid[0], bounds, assets=["B02"], width=128, height=128
)
print(data.shape)
print(mask.shape)
imshow(data[0])
# Let's fetch the data over our AOI for all our Items
# Here we use `futures.ThreadPoolExecutor` to run the requests in parallel
# Note: it takes more time for the notebook to display the results than to fetch the data
bbox_worker = partial(
fetch_bbox_array,
bbox=bounds,
assets=(
"B04",
"B03",
"B02",
), # ("red", "green", "blue"), in next STAC item version (see https://github.com/cogeotiff/rio-tiler-pds/issues/63)
color_formula="gamma RGB 3.5, saturation 1.7, sigmoidal RGB 15 0.35",
width=64,
height=64,
)
with futures.ThreadPoolExecutor(max_workers=10) as executor:
future_work = [executor.submit(bbox_worker, scene) for scene in sceneid]
for f in tqdm(futures.as_completed(future_work), total=len(future_work)):
pass
results_rgb = list(_filter_futures(future_work))
print("diplay all results")
fig = plt.figure(figsize=(10, 20))
col = 5
row = math.ceil(len(dates) / col)
for i in range(1, len(results_rgb) + 1):
fig.add_subplot(row, col, i)
plt.imshow(reshape_as_image(results_rgb[i - 1][1]))
## Fetch NDVI
bbox_worker = partial(
fetch_bbox_array,
bbox=bounds,
expression="(B08-B04)/(B08+B04)", # (nir-red)/(nir+red), in next STAC item version (see https://github.com/cogeotiff/rio-tiler-pds/issues/63)
width=64,
height=64,
)
with futures.ThreadPoolExecutor(max_workers=10) as executor:
future_work = [executor.submit(bbox_worker, scene) for scene in sceneid]
for f in tqdm(futures.as_completed(future_work), total=len(future_work)):
pass
results_ndvi = list(_filter_futures(future_work))
fig = plt.figure(figsize=(10, 20))
col = 5
row = math.ceil(len(dates) / col)
for i in range(1, len(results_rgb) + 1):
fig.add_subplot(row, col, i)
plt.imshow(results_ndvi[i - 1][1][0])
stats = [_stats(data, mask) for _, data, mask in results_ndvi]
fig, ax1 = plt.subplots(dpi=150)
fig.autofmt_xdate()
ax1.plot(dates, [s[0] for s in stats], label="Min")
ax1.plot(dates, [s[1] for s in stats], label="Max")
ax1.plot(dates, [s[2] for s in stats], label="Mean")
ax1.set_xlabel("Dates")
ax1.set_ylabel("Normalized Difference Vegetation Index")
ax1.legend()