DataFilterExtension¶
lonboard.layer_extension.DataFilterExtension ¶
Adds GPU-based data filtering functionalities to layers. It allows the layer to show/hide objects based on user-defined properties.
Example¶
from lonboard import Map, ScatterplotLayer
from lonboard.colormap import apply_continuous_cmap
from lonboard.layer_extension import DataFilterExtension
gdf = gpd.GeoDataFrame(...)
extension = DataFilterExtension()
layer = ScatterplotLayer.from_geopandas(
gdf,
extensions=[extension],
get_filter_value=gdf["filter_value"], # replace with desired column
filter_range=[0, 5] # replace with desired filter range
)
The DataFilterExtension
allows filtering on 1 to 4 attributes at the same time.
So if you have four numeric columns of interest, you can filter on the
intersection of all of them.
For easy visualization, we suggest connecting the DataFilterExtension
to an
interactive slider from ipywidgets
.
from ipywidgets import FloatRangeSlider
slider = FloatRangeSlider(
value=(2, 5),
min=0,
max=10,
step=0.1,
description="Slider: "
)
slider
jsdlink(
(slider, "value"),
(layer, "filter_range")
)
If you have 2 to 4 columns, use a
MultiRangeSlider
, which combines multiple
FloatRangeSlider
objects in a form that the DataFilterExtension
expects.
from ipywidgets import FloatRangeSlider, jsdlink
slider1 = FloatRangeSlider(
value=(2, 5),
min=0,
max=10,
step=0.1,
description="First slider: "
)
slider2 = FloatRangeSlider(
value=(30, 40),
min=0,
max=50,
step=1,
description="Second slider: "
)
multi_slider = MultiRangeSlider([slider1, slider2])
multi_slider
jsdlink(
(multi_slider, "value"),
(layer, "filter_range")
)
Important notes¶
- The DataFilterExtension only supports float32 data, so integer data will be casted to float32.
- The DataFilterExtension copies all data referenced by
get_filter_value
to the GPU, so it will increase memory pressure on the GPU.
Layer Properties¶
This extension dynamically enables the following properties onto the layer(s) where it is included:
filter_enabled
¶
Enable/disable the data filter. If the data filter is disabled, all objects are rendered.
- Type:
bool
, optional - Default:
True
filter_range
¶
The bounds which defines whether an object should be rendered. If an object's filtered value is within the bounds, the object will be rendered; otherwise it will be hidden. This prop can be updated on user input or animation with very little cost.
Format:
If filter_size
is 1, provide a single tuple of (min, max)
.
If filter_size
is 2 to 4, provide a list of tuples: [(min0, max0), (min1,
max1), ...]
for each filtered property, respectively.
- Type: either Tuple[float, float] or List[Tuple[float, float]], optional
- Default:
(-1, 1)
filter_soft_range
¶
If specified, objects will be faded in/out instead of abruptly shown/hidden.
When the filtered value is outside of the bounds defined by filter_soft_range
but
still within the bounds defined by filter_range
, the object will be rendered as
"faded".
- Type: Tuple[float, float], optional
- Default:
None
filter_transform_size
¶
When an object is "faded", manipulate its size so that it appears smaller or
thinner. Only works if filter_soft_range
is specified.
- Type:
bool
, optional - Default:
True
filter_transform_color
¶
When an object is "faded", manipulate its opacity so that it appears more
translucent. Only works if filter_soft_range
is specified.
- Type:
bool
, optional - Default:
True
get_filter_value
¶
Accessor to retrieve the value for each object that it will be filtered by.
- Type:
FilterValueAccessor
- If a scalar value is provided, it is used as the value for all objects.
- If an array is provided, each value in the array will be used as the value for the object at the same row index.
filter_size
class-attribute
instance-attribute
¶
filter_size = tag(sync=True)
The size of the filter (number of columns to filter by).
The data filter can show/hide data based on 1-4 numeric properties of each object.
- Type:
int
, optional - Default 1.