DataFilterExtension¶
The DataFilterExtension
adds GPU-based data filtering functionalities to
layers, allowing the layer to show/hide objects based on user-defined
properties.
In this demo we'll use the DataFilterExtension
to filter millions of points based on three numeric attributes.
As with the ScatterplotLayer
example, this example will use data from Ookla's Speed Test application and shared publicly in the AWS Open Data Registry.
Imports¶
from pathlib import Path
import geopandas as gpd
import numpy as np
import pandas as pd
import shapely
from ipywidgets import FloatRangeSlider, jsdlink
from palettable.colorbrewer.diverging import BrBG_10
from lonboard import Map, ScatterplotLayer
from lonboard.colormap import apply_continuous_cmap
from lonboard.controls import MultiRangeSlider
from lonboard.layer_extension import DataFilterExtension
Fetch data¶
We use the same data as the ScatterplotLayer
example except that here we download extra columns from the dataset to use for filtering.
Columns:
avg_d_kbps
: the average download speed for that data point in kbpsavg_u_kbps
: the average upload speed for that data point in kbpsavg_lat_ms
: the average latency for that data point in millisecondsdevices
: the number of unique devices contributing tests in the tile.tile
: the WKT string representing a given zoom-16 Web Mercator tile
We cache the downloaded file locally to data-filter-extension.parquet
so that the second time running this notebook will be faster.
url = "https://ookla-open-data.s3.us-west-2.amazonaws.com/parquet/performance/type=mobile/year=2019/quarter=1/2019-01-01_performance_mobile_tiles.parquet"
local_path = Path("data-filter-extension.parquet")
if local_path.exists():
gdf = gpd.read_parquet(local_path)
else:
columns = ["avg_d_kbps", "avg_u_kbps", "avg_lat_ms", "devices", "tile"]
df = pd.read_parquet(url, columns=columns)
tile_geometries = shapely.from_wkt(df["tile"])
tile_centroids = shapely.centroid(tile_geometries)
non_geom_columns = [col for col in columns if col != "tile"]
gdf = gpd.GeoDataFrame(df[non_geom_columns], geometry=tile_centroids)
gdf.to_parquet(local_path)
Taking a quick look at this data, we see that we have 3.2 million records.
gdf
avg_d_kbps | avg_u_kbps | avg_lat_ms | devices | geometry | |
---|---|---|---|---|---|
0 | 5983 | 7886 | 68 | 1 | POINT (-160.01862 70.63722) |
1 | 3748 | 5841 | 78 | 2 | POINT (-160.04059 70.63357) |
2 | 3364 | 6200 | 78 | 2 | POINT (-160.04059 70.63175) |
3 | 2381 | 2328 | 86 | 1 | POINT (-160.03510 70.63357) |
4 | 3047 | 5356 | 75 | 1 | POINT (-160.03510 70.63175) |
... | ... | ... | ... | ... | ... |
3231240 | 19528 | 3200 | 68 | 1 | POINT (169.81842 -46.29571) |
3231241 | 15693 | 10359 | 56 | 1 | POINT (169.81293 -46.30710) |
3231242 | 26747 | 9674 | 58 | 2 | POINT (169.66461 -46.42082) |
3231243 | 67995 | 13564 | 63 | 1 | POINT (169.65912 -46.45110) |
3231244 | 1230 | 1798 | 55 | 1 | POINT (168.85162 -46.56075) |
3231245 rows × 5 columns
Since we want to cross-filter on three attributes at once, we create a DataFilterExtension
instance with filter_size=3
.
filter_extension = DataFilterExtension(filter_size=3)
Similar to the ScatterplotLayer
example notebook, we create a normalized download speed to use for a per-point color and radius.
min_bound = 5000
max_bound = 50000
normalized_download_speed = (gdf["avg_d_kbps"] - min_bound) / (max_bound - min_bound)
fill_color = apply_continuous_cmap(normalized_download_speed, BrBG_10)
radius = normalized_download_speed * 200
Next we prepare the columns that we want to filter on. In this case, we'll filter on the download speed, upload speed, and latency values. These need to be passed in as a single two-dimensional numpy array, so we use numpy.column_stack
. Only numeric arrays can be used for GPU-based filtering.
We also define initial filter ranges for each of these columns.
filter_values = np.column_stack(
[gdf["avg_d_kbps"], gdf["avg_u_kbps"], gdf["avg_lat_ms"]]
)
initial_filter_range = [
[10_000, 50_000],
[1000, 10_000],
[0, 100],
]
Next we create a ScatterplotLayer
with our desired attributes. Keep in mind that you must pass the DataFilterExtension
instance to the extensions
parameter in order to activate its functionality on the layer.
layer = ScatterplotLayer.from_geopandas(
gdf,
extensions=[filter_extension],
get_fill_color=fill_color,
get_radius=radius,
get_filter_value=filter_values,
filter_range=initial_filter_range,
radius_units="meters",
radius_min_pixels=0.1,
)
m = Map(layer)
m
Map(layers=[ScatterplotLayer(extensions=[DataFilterExtension(filter_size=3)], filter_range=[[10000.0, 50000.0]…
Only the points that are within all of our initial filter ranges are shown, but we'd like something more interactive. Let's connect sliders to the map.
Here we create a separate slider for each attribute and then connect them using a MultiRangeSlider
. This defines the slider element but it won't be connected to the map until we use ipywidgets.jsdlink
later.
download_slider = FloatRangeSlider(
value=initial_filter_range[0],
min=0,
max=70_000,
step=0.1,
description="Download: ",
)
upload_slider = FloatRangeSlider(
value=initial_filter_range[1],
min=0,
max=50_000,
step=1,
description="Upload: ",
)
latency_slider = FloatRangeSlider(
value=initial_filter_range[2],
min=0,
max=500,
step=1,
description="Latency: ",
)
multi_slider = MultiRangeSlider([download_slider, upload_slider, latency_slider])
multi_slider
MultiRangeSlider(children=(FloatRangeSlider(value=(10000.0, 50000.0), description='Download: ', max=70000.0), …
In order to propagate the changes in our sliders to the ScatterplotLayer
instance, we use jsdlink
. See Linking Widgets in the ipywidgets documentation for more info.
_ = jsdlink((multi_slider, "value"), (layer, "filter_range"))